transitive closures - significado y definición. Qué es transitive closures
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es transitive closures - definición

IN SET THEORY, A SET WHOSE ELEMENTS ARE ALL SUBSETS
Transitive class; Transitive closure (set); Hereditarily transitive set; Transitive (set theory); Transitive closure (sets)

Reflexive transitive closure         
MATHEMATICAL PROPERTY OF AN OPERATION
Closure (binary operation); Closed under; Set closure (mathematics); Abstract closure; Axiom of closure; Abstract closure operator; Additively closed; Closure property of multiplication; Reflexive transitive closure; Reflexive transitive symmetric closure; P closure (binary relation); P closure; Reflexive symmetric transitive closure; Equivalence closure; Closure property; Congruence closure; Closure of a relation
Two elements, x and y, are related by the reflexive transitive closure, R+, of a relation, R, if they are related by the transitive closure, R*, or they are the same element.
Transitive set         
In set theory, a branch of mathematics, a set A is called transitive if either of the following equivalent conditions hold:
Transitive alignment         
GRAMMATICAL CASE
Transitive case
In linguistic typology, transitive alignment is a type of morphosyntactic alignment used in a small number of languages in which a single grammatical case is used to mark both arguments of a transitive verb, but not with the single argument of an intransitive verb. Such a situation, which is quite rare among the world's languages, has also been called a double-oblique clause structure.

Wikipedia

Transitive set

In set theory, a branch of mathematics, a set A {\displaystyle A} is called transitive if either of the following equivalent conditions hold:

  • whenever x A {\displaystyle x\in A} , and y x {\displaystyle y\in x} , then y A {\displaystyle y\in A} .
  • whenever x A {\displaystyle x\in A} , and x {\displaystyle x} is not an urelement, then x {\displaystyle x} is a subset of A {\displaystyle A} .

Similarly, a class M {\displaystyle M} is transitive if every element of M {\displaystyle M} is a subset of M {\displaystyle M} .